| Please check the examination details bel | ow before ente | ring your candidate information | |---|--------------------|---------------------------------| | Candidate surname | | Other names | | Centre Number Candidate N | | | | Pearson Edexcel Level Friday 19 May 2023 | 13 GCE | | | Afternoon | Paper
reference | 8FM0/23 | | Further Mathematic
Advanced Subsidiary
Further Mathematics options
23: Further Statistics 1
(Part of options B, E, F and G) | :s | • | | You must have:
Mathematical Formulae and Statistica | l Tables (Gre | een), calculator | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Values from statistical tables should be quoted in full. If a calculator is used instead of tables the value should be given to an equivalent degree of accuracy. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - The total mark for this part of the examination is 40. There are 4 questions. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over 1. The discrete random variable X has the following distribution | x | 0 | 1 | 2 | 3 | 4 | |--------|---|---|---------------|---------------|---------------| | P(X=x) | r | k | $\frac{k}{2}$ | $\frac{k}{3}$ | $\frac{k}{4}$ | where r and k are positive constants. The standard deviation of X equals the mean of X Find the exact value of r | **** | |--| | ×××× | | $\times\!\!\times\!\!\times\!\!\times$ | | **** | | ***** | | ***** | | XXXXX | | | | | | × 22 × | | \times 95 \times | | | | \times | | \times co \times | | \times | | | | × ** × | | \times | | | | | | \times | | \times | | | | | | \times 0C \times | | \times | | | | \times | | \times | | \times | | \times | | | | \times | | $\times \circ \times$ | | \times | | DO NOT WRITE IN THIS AREA | | ***** | | | | | | **** | | | | ***** | | **** | | | | $\times\!\!\times\!\!\times\!\!\times$ | | **** | | ***** | | **** | | **** | | **** | | **** | | **** | | **** | | $\times\!\!\times\!\!\times\!\!\times$ | | | | E A | | | | 02 | | HIS A | | THIS / | | \times | | 並 | D NOT WRITE IN | | | | D NOT WRITE IN DO NOT WRITE IN | | D NOT WRITE IN | | DO NOT WRITE IN | | EA DO NOT WRITE IN | | REA DO NOT WRITE IN | | EA DO NOT WRITE IN | | AREA DO NOT WRITE IN | | S AREA DO NOT WRITE IN | | IS AREA DO NOT WRITE IN | | IS AREA DO NOT WRITE IN | | HIS AREA DO NOT WRITE IN | | THIS AREA DO NOT WRITE IN | | THIS AREA DO NOT WRITE IN | | THIS AREA DO NOT WRITE IN | | IN THIS AREA DO NOT WRITE IN | | E IN THIS AREA DO NOT WRITE IN | | TE IN THIS AREA DO NOT WRITE IN | | ITE IN THIS AREA DO NOT WRITE IN | | RITE IN THIS AREA DO NOT WRITE IN | | IRITE IN THIS AREA DO NOT WRITE IN | | RITE IN THIS AREA DO NOT WRITE IN | | IRITE IN THIS AREA DO NOT WRITE IN | | T WRITE IN THIS AREA DO NOT WRITE IN | | IRITE IN THIS AREA DO NOT WRITE IN | | IOT WRITE IN THIS AREA DO NOT WRITE IN | | IOT WRITE IN THIS AREA DO NOT WRITE IN | | IOT WRITE IN THIS AREA DO NOT WRITE IN | | OT WRITE IN THIS AREA DO NOT WRITE IN | | IOT WRITE IN THIS AREA DO NOT WRITE IN | | × | | | 2 | ١ | | |-----|----|----|---------------|---|---------| | / | | | | | | | | | | | | | | Κ | | | | | | | 2 | | | | | | | | | ٦ | | | | | | | | | | | | 0 | c | | | | | | Κ | | | | | | | J | | | | | | | | | | | \ | | | | | К | | | | | | | 2 | | | | | | | | | | | | / | ١, | | | | | | 0 | | | | | | 0 | | | | > | | | Κ | | | | | | | / | | | | | | | | | | | 7 | | | | ۵ | ú | | ø | | | . J | | 2 | | | | | × | 7 | ٦ | 9 | a | | | 1 | ۵, | 4 | | ú | | | ď | Ľ | | K | | | | KI. | 8 | ņ | | u | | | 2 | и | ĸ | | ď | | | Ν | r | ٦ | r | 7 | | | Ø | | | | μ | | | 0 | | 0 | | ۵ | | | ×, | | ρ | | ₹ | | | A | ۹ | ы | | 2 | | | ١, | | | 7 | 9 | | | Κ | | | > | | | | а | ĸ. | 2 | я | к | | | × | ь | | | | | | / | 3 | | | 7 | | | | | | | 4 | | | Κ, | _ | 4 | | 4 | | | Ì | ₹ | | ₹ | 7 | | | ٦ | 2 | | и | ₹ | | | ď. | - | ۰ | 7 | • | | | - 3 | E. | | ş | | | | KJ | ۲ | ۰ | × | н | | | | | | | | | | 1 | | | | \ | | | Ø | , | ņ | | | | | - 2 | Sa | ø | ₹ | | | | × | | | | ы | | | έ, | _ | 4 | $\overline{}$ | 4 | | | 3 | e | • | e | - | | | Κ | | | | | | | À. | á. | я | 9 | | | | Ν | Ŀ | | ĸ | | | | ø | ۰, | 7 | 7 | | | | а | | | | | | | K | | _ | ۷. | S | | | | þ | Ħ | þ | ų | | | | þ | Ħ | þ | ų | | | q | þ | Ħ | þ | ų | | | Í | þ | Ħ | þ | ų | | | Ś | þ | Ħ | þ | ų | | | 3 | þ | Ħ | þ | ų | | | | þ | Ħ | þ | ų | < < < < | | | þ | Ħ | þ | ų | | | 3 | þ | Ħ | þ | ų | | | | þ | Ħ | þ | ų | | | | þ | Ħ | þ | ų | Question 1 continued | | |----------------------|--------------------------------| (То | tal for Question 1 is 6 marks) | | | | **2.** A bag contains a large number of balls, all of the same size and weight. The balls are coloured Red, Blue or Yellow. Jasmine asks each child in a group of 150 children to close their eyes, select a ball from the bag and show it to her. The child then replaces the ball and repeats the process a second time. If both balls are the same colour the child receives a prize. The results are given in the table below. | 1st colour 2nd colour | Red | Blue | Yellow | Total | |-----------------------|-----|------|--------|-------| | Red | 31 | 11 | 18 | 60 | | Blue | 8 | 10 | 9 | 27 | | Yellow | 21 | 9 | 33 | 63 | | Total | 60 | 30 | 60 | 150 | Jasmine carries out a test, at the 5% level of significance, to see whether or not the colour of the 2nd ball is independent of the colour of the 1st ball. (a) Calculate the expected frequencies for the cases where both balls are the same colour. **(2)** The test statistic Jasmine obtained was 12.712 to three decimal places. (b) Use this value to complete the test, stating the critical value and conclusion clearly. **(3)** With reference to your calculations in part (a) and the nature of the experiment, (c) give a plausible reason why Jasmine may have obtained her conclusion in part (b). **(1)** | $\times\!\!\times\!\!\times$ | |--| | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | DO NOT WRITE IN THIS AREA | | ×111/ | | ×62 | | X | | \times | | $\times\!\!\!\times\!\!\!\times\!\!\!\times$ | | | | $\times \times \times$ | | \times | | | | | | | | | | <u> </u> | | | | | | $\times \mapsto$ | | \otimes | | $\times = \times$ | | | | \times 0 \times | | $\otimes \mathbf{A} \otimes$ | | | | $\times\!\!\times\!\!\times$ | | >>>> | | $\times\!\!\times\!\!\times$ | | XXX | | $\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | >>>> | | $\times\!\!\times\!\!\times$ | | **** | | | | ×0.0 | | ×02 | | | | | | <u> </u> | | × 1 2 | | $\otimes \times \otimes$ | | | | | | | | Z | | N. H. | | TEIN | | RITEIN | | VRITE IN | | WRITEIN | | T WRITE IN | | OT WRITE IN | | NOT WRITE IN | | NOT WRITE IN | | O NOT WRITE IN THIS AREA | | DO NOT WRITE IN DØ NOT WRITE IN | | DØ NOT WRITE IN | | DO | | DO | | EA DO | | EA DO | | EA DO | | AREA NOT WRITE IN THIS AREA DO | | NOT WRITE IN THIS AREA DO | | AREA DO | | Question 2 continued | | |----------------------|-----------------------------------| (Total for Question 2 is 6 marks) | | | | **3.** A machine produces cloth. Faults occur randomly in the cloth at a rate of 0.4 per square metre. The machine is used to produce tablecloths, each of area A square metres. One of these tablecloths is taken at random. The probability that this tablecloth has no faults is 0.0907 (a) Find the value of A **(3)** The tablecloths are sold in packets of 20 A randomly selected packet is taken. (b) Find the probability that more than 1 of the tablecloths in this packet has no faults. **(3)** A hotel places an order for 100 tablecloths each of area A square metres. The random variable *X* represents the number of these tablecloths that have no faults. - (c) Find - (i) E(*X*) - (ii) Var(X) **(3)** (d) Use a Poisson approximation to estimate P(X = 10) **(2)** It is claimed that a new machine produces cloth with a rate of faults that is less than 0.4 per square metre. A piece of cloth produced by this new machine is taken at random. The piece of cloth has area 30 square metres and is found to have 6 faults. (e) Stating your hypotheses clearly, use a suitable test to assess the claim made for the new machine. Use a 5% level of significance. **(4)** (f) Write down the *p*-value for the test used in part (e). **(1)** | XXXXX | |--| | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | | | $\times\!\!\times\!\!\times\!\!\times$ | | | | $\times\!\!\times\!\!\times\!\!\times$ | | ₩₩. | | | | $\times\!\times\!\times\!\times$ | | | | XXXX | | \times | | | | ×*** | | \times | | | | \times | | \times | | $\times \times \times \times$ | | | | | | | | | | | | \times | | $\otimes \times \times$ | | $\times \otimes \times$ | | | | | | \times | | DO NOT WRITE IN THIS AREA | | $\times \triangle \times$ | | \times | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times\!\!\times\!\!\times\!\!\times$ | | | | $\times\!\!\times\!\!\times$ | | | | $\times\!\!\times\!\!\times\!\!\times$ | | $\times 990$ | | XXXXX | | $\times \times \times$ | | | | × co× | | | | | | | | | | | | | | Z | | EIN | | FINT | | ITE IN T | | RITEINT | | RITE IN T | | WRITEINT | | WRITE IN T | | TWRITEINT | | OT WRITE IN T | | JOT WRITE IN T | | NOT WRITE IN T | | O NOT WRITE IN THIS AREA | | $\times\!\!\!\!\times\!\!\!\!\!\times$ | | $\times\!\!\!\!\times\!\!\!\!\!\times$ | | $\times\!\!\!\times\!\!\!\!\times$ | | $\times\!\!\!\!\times\!\!\!\!\!\times$ DC | | DC | | EA DC | | REA DC | | REA DC | | AREA DC | | SAREA DC | | SAREA DC | | SAREA DC | | SAREA DC | | THIS AREA DC | | THIS AREA DC | | SAREA DC | | IN THIS AREA DC | | E IN THIS AREA DC | | WRITE IN THIS AREA DC | | NOT WRITE IN THIS AREA DC | | WRITE IN THIS AREA DC | | NOT WRITE IN THIS AREA DC | | Question 3 continued | | |----------------------|--| Question 3 continued | |----------------------| \times | $\times\!\!\times\!\!\times$ | X | |-----------------------------|--|---| | \otimes | $\times\!\!\times$ | Š | | Ø, | $\times\!$ | Ç | | × | \times | X | | $\langle \rangle$ | $\times\!\!\times$ | Š | | X | $\times\!\!\!\times$ | Š | | × | $\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ | S | | \otimes | \otimes | X | | \otimes | $\times\!\!\times\!\!$ | Ś | | X | $\otimes \otimes$ | ŝ | | X | \otimes | × | | \otimes | $\times \times$ | X | | × | IN THIS AREA | Š | | × | ЫÜ | K | | × | 77 | X | | \approx | 0 % | X | | X | ف | Ö | | | | Q | | × | | X | | X | м. | X | | Ø. | XX | Ö | | X | | X | | × | $\overline{\mathbb{Z}}$ | Χ | | \otimes | X | | | Ø, | 4 | Q | | X | | Ø | | \times | • | × | | 88. | ni i | Č | | X. | | Q | | × | | X | | \times | | × | | × | α | Ø | | X | W | S | | \times | WRITE | X | | X | | Š | | X | × | Q | | X | \sim | × | | \approx | U | | | X | ÷ | Ç | | × | DO NOT | Ø | | \otimes | \sim | X | | $\langle \! \rangle$ | Q | Ķ | | X | 0 | ø | | X | | X | | X. | $\times\!\!\times\!\!\times$ | < | | X | $\times\!\!\!\times$ | Ś | | × | \otimes | S | | \times | \times | × | | $\langle \! \rangle$ | $\times\!\!\times$ | Š | | X | $\times\!\!\times\!\!$ | Ś | | × | $\langle \times \rangle$ | × | | \otimes | $\times\!\!\times$ | X | | 炎. | $\times\!\!\times$ | Š | | X | 88 | Ś | | X | $\langle \times \rangle$ | × | | $\langle \rangle$ | XX | Š | | V. | $\Leftrightarrow \diamond$ | 0 | | X | $\times\!\!\times\!\!\times$ | S | | \times | $\times\!\!\times$ | X | | X | $\times\!\!\times$ | | | X | $\Leftrightarrow >$ | Q | | X | ** | | | X | \approx | | | X | 4 | Ç | | X | | S | | X | Ш | × | | \times | 00 | X | | X | AREA | Ω | | X | Œ | X | | | $\propto x$ | | | XX | | Z | | \otimes | 'n | 8 | | \otimes | S | X | | $\stackrel{\times}{\times}$ | S | | | | Y | | | ×
× | S I | | | ×
× | S T | SHEN SHEET | | | | | | | | WRITEINTHIS | | | | TWRITE IN THIS | | | | TWRITEINTHIS | | | | OTWRITEINTHIS | | | | OTWRITEINTHIS | | | | NOTWENTER | | | | DO NOT WRITE IN THIS | | | | NOTWENTER DO NOT WRITE | | | | AREA DO NOT WRITE | | **Question 3 continued** |
 | |------------------------------------| |
 |
 | (Total for Question 3 is 16 marks) | | (| | | | | **4.** Table 1 below shows the number of car breakdowns in the *Snoreap* district in each of 60 months. | Number of car
breakdowns | 0 | 1 | 2 | 3 | 4 | 5 | |-----------------------------|----|----|----|----|---|---| | Frequency | 12 | 11 | 19 | 14 | 3 | 1 | Table 1 Anja believes that the number of car breakdowns per month in *Snoreap* can be modelled by a Poisson distribution. Table 2 below shows the results of some of her calculations. | Number of car
breakdowns | 0 | 1 | 2 | 3 | 4 | <i></i> ≥5 | |-----------------------------|------|----|----|------|------|------------| | Observed frequency (O_i) | 12 | 11 | 19 | 14 | 3 | 1 | | Expected frequency (E_i) | 9.92 | | | 9.64 | 4.34 | | Table 2 (a) State suitable hypotheses for a test to investigate Anja's belief. **(1)** (b) Explain why Anja has changed the label of the final column to ≥ 5 **(1)** (c) Showing your working clearly, complete Table 2 - **(4)** - (d) Find the value of $\frac{(O_i E_i)^2}{E_i}$ when the number of car breakdowns is - (i) 1 - (ii) 3 **(2)** (e) Explain why Anja used 3 degrees of freedom for her test. **(2)** The test statistic for Anja's test is 6.54 to 2 decimal places. - (f) Stating the critical value and using a 5% level of significance, complete Anja's test. - **(2)** | \Diamond | 2 | × | 2 | |-------------|--------------------------|---|--| | X | X | X | Ś | | Ŏ | Š | X | S | | X | X | X | < | | X | S | X | S | | ♦ | Ņ | X | 2 | | X | X | × | ζ | | X | S | X | S | | Ŷ | Ŷ | X | ? | | X | Z | Š | Ŕ | | X | 5 | 1 | | | Q. | Ŀ | | Ď | | \Diamond | 7 | 4 | 2 | | X | E | K | Ŕ | | X | ¥ | ľ | K | | X | े | | | | \Diamond | r | ñ | 2 | | × | 2 | Å. | k | | X | Ξ | | | | X | Z | ∇ | S | | ♦ | Œ | X | 2 | | X | 更 | X | 2 | | X | 4 | 9 | Ķ | | ⋄ | × | - | Ď | | × | * | ì | | | X | Æ. | ĸ | K | | X | 5 | X | Ķ | | Ŏ | r | $\overline{}$ | 5 | | \otimes | 迚 | | R | | X | C | C | | | Ö | Š | ~ | S | | \Diamond | Z | S | R | | X | X. | | ζ | | X | ŀ | | Ś | | Q. | p | 9 | 2 | | × | × | 4 | Ķ | | 8 | á | | S | | \Diamond | 7 | | þ | | X | è | × | | | X | 5 | y | Ś | | Ş | P | | 8 | | \otimes | ۶ | X | 2 | | X | X | × | < | | 8 | S | $\langle \rangle$ | S | | Ş | S | × | S | | X | X | X | 2 | | X | X | Ó | < | | X | S | X | S | | < | Š | | S | | X | 8 | X | 2 | | X | X | X | < | | X | × | | | | ⋄ | Ç. | × | 2 | | | × | × | ₹ | | X | X | X | Ś | | Ŏ. | ×. | X | 5 | | \Diamond | × | X | 2 | | X | X | × | Ś | | X | X | X | S | | Ŷ | Š | × | S | | X | 2 | X | 2 | | × | ¥ | 1 | Ķ | | Ö | ॅ | | ß | | Ø | Ŀ | Ы | | | X | è | N Z | Ŕ | | X | 8 | × | K | | | 惩 | ĸ | | | X | | | | | X | X | \otimes | 2 | | 8 | ť | n | 2 | | × | 2 | ٥ | 2 | | ×
× | | 2 | 2 | | ×
×
× | | | | | ×
×
× | | | \ K K K K K K | | | | | | | | | | \
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K | | | | | \ KKKKK KKKKK | | | | | \\K\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | \\K\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | \\KK\\\\K\\\\\K\\\\\\\\\\\\\\\\\\\\\\\ | | | | | ~ KKKKKKKKKKKKKKKKK | | | | | \
K
K
K
K
K
K
K | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | ~ K K K K K K K K K K K K K K K K K K K | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | | ~ | | | | | \
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K | | | | | | | | | | ~ K K K K K K K K K K K K K K K K K K K | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | ~ K K K K K K K K K K K K K K K K K K K | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | CITE IN CITE CA | | | | | | | | | | CITE IN CITE CONTROL SEC | | | | | CITE IN CITE CONTROL SEC | | | | | CITE IN CITE CONTROL SEC | S E - S U - | | | | | C L C L C L C C C C C C C C C C C C C C | | | | | C L C L C L C C C C C C C C C C C C C C | | | | | C L C L C L C C C C C C C C C C C C C C | | | | | C L C L C L C C C C C C C C C C C C C C | | | | | C L C L C L C C C C C C C C C C C C C C | | | | | C L C L C L C C C C C C C C C C C C C C | | | | | WE THE TANK TO SO | | | | | S E - S U - | | **Question 4 continued** |
 | |------| | | | | | | | | | | | | | | | Question 4 continued | | |----------------------|--| (Total for Question 4 is 12 marks) | | | TOTAL FOR FURTHER STATISTICS 1 IS 40 MARKS |